Remarks on the Stable S α (β,γ,μ) Distribution

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks on the Stable Sα(β, γ, μ) Distribution

Explicit closed forms are derived for the probability density function of the stable distribution Sα(β, γ, μ), α ∈ (1, 2]. Consequent asymptotic expansions are given. The expressions involve the Srivastava-Daoust generalized Kampé de Fériet hypergeometric S-function, the Fox-Wright generalized hypergeometric Ψ-function, and the Gauss hypergeometric function 2F1. 2000 Mathematics subject classif...

متن کامل

Some Remarks on Α-domination

Let α ∈ (0, 1) and let G = (VG, EG) be a graph. According to Dunbar, Hoffman, Laskar and Markus [3] a set D ⊆ VG is called an α-dominating set of G, if |NG(u)∩D| ≥ αdG(u) for all u ∈ VG \D. We prove a series of upper bounds on the α-domination number of a graph G defined as the minimum cardinality of an α-dominating set of G.

متن کامل

Remarks on s-Extremal Codes

We study s-extremal codes over F4 or over F2. A Type I self-dual code over F4 or over F2 of length n and minimum distance d is s-extremal if the minimum weight of its shadow is largest possible. The purpose of this paper is to give some results which are missing in a series of papers by Bachoc and Gaborit [2], by Gaborit [6], and by Bautista, et. al. [1]. In particular, we give an explicit form...

متن کامل

Some Remarks on the Mass Density Distribution

The distribution of the density of mass in several simple model systems is analyzed. In particular, the relation between the localization of a particle and its mass is studied in detail. The dependence of the function describing mass density distribution on the choice of the reference point and, in this context, the process of emerging the molecular shape as a function of masses of the constitu...

متن کامل

On α-Square-Stable Graphs

The stability number of a graph G, denoted by α(G), is the cardinality of a maximum stable set, and μ(G) is the cardinality of a maximum matching in G. If α(G) + μ(G) equals its order, then G is a König-Egerváry graph. We call G an α-square-stable graph if α(G) = α(G), where G denotes the second power of G. These graphs were first investigated by Randerath and Wolkmann, [18]. In this paper we o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Methodology and Computing in Applied Probability

سال: 2014

ISSN: 1387-5841,1573-7713

DOI: 10.1007/s11009-014-9404-9